
Modular RAGs
Finn Vilsbæk

fvil@eadania.dk

1



Subjects for today

• Changes to the example code base

• Coding Challenge

2



Modular RAGs

• We are going to make some changes to the code base, in order to enhance 
our web application with text output from two to three different LLM’s.

• We will start with the VectorRepository class in the Models Folder. 
Comment out or remove line 45, and add the score line at line 57.

3



Modular RAGs

• Now, we’ll add the score to the ResultSearch.cs file at line 7. 
ResultSearch.cs also lives in the models folder.

4



Modular RAGs

• We will now add two folders to the web 
application project: Services and Resources.

In the Resources folder, add an empty text file 
named ‘RAGPromptFinal’ – the text for this file
will be supplied later.

In Services, add four empty classes:

AzureOpenAIService.cs,
ILLMService.cs,
LLamaService.cs, and finally
MistralService.cs.

5



Modular RAGs

• Here is the code block for ILLMService.cs:

6



Modular RAGs

• Changes to VectorSearchController.cs in the Controllers folder:

7



Modular RAGs

• Changes to DoSearch.cshtml in the Views >> VectorSearch folder:

8



Modular RAGs

• Now we will build a central part of the Web Application: the class file
AzureOpenAIService.cs, which we previously set up as an empty class in the 
folder ‘Services’. Start by entering the following lines of code in the editor -
and pay attention to the line numbers on the left side in the following slides, 
as a guide to where you are in the file when building out the class.

9



Modular RAGs

• I am a lazy loader kind of guy, and I rather enjoy the concept of just-in-
time information, so I thought I would ask ChatGPT to explain the three 
main parts of the class for us, as seen below. The constructor method 
for any C# class is distinguished by having the same name as the class, 
and no return type – not even void.

• In our specific case here, the constructor serves to ensure that we 
cannot instantiate the class without passing in the required parameter 
configuration of type IConfiguration. The configuration object passed in 
here contains the details of endpoint url and access key to the service, 
which we get from the file appsettings.json.

10



Modular RAGs

• The following async method will generate a summary sentence from the 
data returned from the LLM in response to the entered search term.

11



Modular RAGs
• Finally, the private generateAsync method, which is called in the method 

GenerateSummarySentence from the previous slide will ask the OpenAI LLM
model for a response to the query sent in by the user. The access modifier 
private means ‘only for internal use inside the class’. This completes the 
AzureOpenAIService class. 

12



Modular RAGs

• A bit of explanation courtesy of ChatGPT for the generateAsync method:

13



Modular RAGs

• http://panmedia.dk/en-US/rag-workshop

• The text for the 
remaining files
RAGPromptFinal.txt 
as well as 
MistralService.cs
can be found in the 
Text Files download 
zip at the above url.

14

http://panmedia.dk/en-US/rag-workshop


Modular RAGs

• I have also supplied the keys for setting up endpoints in the bottom of the 
appsettings.json text file, as seen here:

• Note that these three endpoints and keys are temporary Azure resources I 
have set up for this workshop. They will be deleted later on, so if you want 
to keep exploring how to set up and modify an example RAG system such as 
this one, I recommend that you research how to set up a hub and a project 
in Azure AI Services, where you can host your own models. You can follow 
the links at the end of this PDF to find out more about these subjects.

15



Modular RAGs

• Finally, we need to call one of the LLM Services as a singleton at the very 
start of the application. In Program.cs for the web application, add the lines 
14, 15 and 16. Be sure to always comment out two of them at a time.

16



Modular RAGs

• Remember to point the solution default to the web app in the top 
dropdown before running it in debug mode in VS 2022:

17



Modular RAGs

• If everything is 
working as it should, 
you should now be able 
to see a text output 
from the model of 
choice along with the 
returned images from 
the previous version 
of the app:

18



Modular RAGs

• Coding Challenge: 

• Set up the LlamaService.cs class in the Services folder by 
yourself. Hint: It bears a remarkable resemblance to one of the 
other service classes..

19



Modular RAG’s

• Learn more about Azure AI Services hubs and projects:

• Microsoft Learn AI Services landing page: 
https://learn.microsoft.com/en-us/azure/ai-services/

• Azure AI Studio:
https://azure.microsoft.com/en-us/products/ai-studio 

• Azure AI Hubs and projects:
https://learn.microsoft.com/en-us/azure/ai-studio/how-to/create-
azure-ai-resource?tabs=portal

20

https://learn.microsoft.com/en-us/azure/ai-services/
https://azure.microsoft.com/en-us/products/ai-studio
https://learn.microsoft.com/en-us/azure/ai-studio/how-to/create-azure-ai-resource?tabs=portal
https://learn.microsoft.com/en-us/azure/ai-studio/how-to/create-azure-ai-resource?tabs=portal

	Slide 1:     Modular RAGs
	Slide 2: Subjects for today
	Slide 3: Modular RAGs
	Slide 4: Modular RAGs
	Slide 5: Modular RAGs
	Slide 6: Modular RAGs
	Slide 7: Modular RAGs
	Slide 8: Modular RAGs
	Slide 9: Modular RAGs
	Slide 10: Modular RAGs
	Slide 11: Modular RAGs
	Slide 12: Modular RAGs
	Slide 13: Modular RAGs
	Slide 14: Modular RAGs
	Slide 15: Modular RAGs
	Slide 16: Modular RAGs
	Slide 17: Modular RAGs
	Slide 18: Modular RAGs
	Slide 19: Modular RAGs
	Slide 20: Modular RAG’s

